0引言
隨著化石能源資源的日益緊張和全球環(huán)境問題的突出,全球各國都在尋求可持續(xù)的能源發(fā)展道路。在政策支持下,風(fēng)電、光伏等清潔能源快速發(fā)展,但其間歇性和波動性對電網(wǎng)的安全穩(wěn)定運(yùn)行造成了重大影響,各地都出現(xiàn)了不同程度的棄風(fēng)棄光。虛擬電廠(VirtualPowerPlant,VPP)是推進(jìn)高比例可再生能源發(fā)展的重要措施之一。我國“十四五"現(xiàn)代能源體系規(guī)劃中指出,建立“源-網(wǎng)-荷-儲"一體化以及多能互補(bǔ)項目協(xié)調(diào)運(yùn)營和利益共享機(jī)制。虛擬電廠可在不改變每個分布式電源并網(wǎng)方式的前提下,聚合分布式電源、儲能、可控負(fù)荷等不同類型的分布式能源,并通過控制策略實現(xiàn)多個分布式能源的協(xié)調(diào)優(yōu)化運(yùn)行,有利于資源的合理優(yōu)化配置及利用。2021年12月21日,能源局發(fā)布的新版《電力輔助務(wù)管理辦法》和《電力并網(wǎng)運(yùn)行管理規(guī)定》更是明確了虛服擬電廠的并網(wǎng)主體地位,鼓勵虛擬電廠、新型儲能、可調(diào)節(jié)負(fù)荷等并網(wǎng)主體參與電力輔助服務(wù)。
儲能因其功率雙向流動、響應(yīng)調(diào)節(jié)速度快等特點,通過虛擬電廠的優(yōu)化配置和協(xié)同控制,
可實現(xiàn)能量專業(yè)和快速功率控制,在系統(tǒng)調(diào)峰、調(diào)頻、調(diào)壓、緊急控制等方面發(fā)揮作用,與源、荷側(cè)靈活調(diào)節(jié)資源形成調(diào)節(jié)能力,對支撐新型電力系統(tǒng),提高電網(wǎng)運(yùn)行安全水平等具有積極意義。
本文針對以集中式儲能為主體的虛擬電廠,首先分析了其組成結(jié)構(gòu)和調(diào)度模型;然后以實際工程為例,研究了集中式儲能的設(shè)計,從儲能技術(shù)路線選擇到儲能系統(tǒng)集成設(shè)計方面,保證集中式儲能可以滿足虛擬電廠運(yùn)行要求。虛擬電廠以集中式儲能作為主體,一方面可以為區(qū)域提供平穩(wěn)可控的出力,另一方面可以通過儲能的雙向功率調(diào)節(jié)作用,增加區(qū)域內(nèi)新能源的消納,減少棄風(fēng)棄光現(xiàn)象,使得電網(wǎng)運(yùn)行更加安全。
1以集中式儲能為主體的虛擬電廠模型
1.1虛擬電廠結(jié)構(gòu)
虛擬電廠將分布式能源(DistributedEnergyResource,DER)、可控負(fù)荷(InterruptibleLoad,IL)和儲能設(shè)備進(jìn)行有機(jī)結(jié)合,通過控制技術(shù)和通信技術(shù)對其區(qū)域內(nèi)各類分布式能源和負(fù)荷進(jìn)行整體優(yōu)化調(diào)控,不影響各能源并網(wǎng)方式,可多點接入電網(wǎng),也可將其區(qū)域內(nèi)所有能源整合作為整體參與電力市場。如圖1所示,虛擬電廠可以根據(jù)其控制策略,通過調(diào)整分布式電源出力、儲能設(shè)備充放電以及切除可控負(fù)荷等手段,協(xié)調(diào)優(yōu)化其內(nèi)部各分布式能源和負(fù)荷間的能量流動,從而作為整體參與電力市場交易行為,進(jìn)行電能售賣與購買。以集中式儲能電站為主體構(gòu)建虛擬電廠,可充分發(fā)揮集中式儲能電站大容量出力、大范圍調(diào)節(jié)、寬時域支撐的宏觀作用,同時輻射周邊其他靈活調(diào)節(jié)資源,形成“以點帶面、以大聚小"的整體運(yùn)行模式,可有效提升虛擬電廠確定性、置信度、可靠性和支撐力,實現(xiàn)對大量分布式、小容量、多類型、高分散資源真正有效控制,強(qiáng)化虛擬電廠的可觀、可測、可控,同時兼顧電網(wǎng)安全穩(wěn)定運(yùn)行與電力市場,以高可靠性、高靈活性、多商業(yè)模式的方式運(yùn)行。
1.2虛擬電廠調(diào)度模型
虛擬電廠控制作為以儲能電站為主體的新型虛擬電廠的總控,可以把區(qū)域范圍內(nèi)的儲能電站、分布式電源、可調(diào)節(jié)負(fù)荷等資源接入該系統(tǒng)?;谠摽刂?虛擬電廠可參與主能量和輔助服務(wù)的電力交易市場,充分發(fā)揮集中式儲能電站的出力特性,提高分布式電源、可調(diào)節(jié)負(fù)荷的使用效率,提升虛擬電廠可靠性。虛擬電廠中的儲能可以運(yùn)行在兩種模式:一是單獨參與電網(wǎng)調(diào)度;二是與分布式電源、負(fù)荷聯(lián)合參與調(diào)度運(yùn)行。
儲能電站單獨參與電網(wǎng)調(diào)度時,只調(diào)整儲能的充放電,不影響其他分布式能源或負(fù)荷。儲能參與調(diào)峰輔助服務(wù),代替電網(wǎng)傳統(tǒng)調(diào)峰手段(燃煤火電機(jī)組),提高整個電網(wǎng)的經(jīng)濟(jì)性;參與調(diào)頻輔助服務(wù),支持自動發(fā)電控制(AGC)功能,即實時響應(yīng)上層調(diào)度系統(tǒng)下發(fā)的儲能系統(tǒng)調(diào)頻功率需求命令,實時滿足上層調(diào)度下發(fā)的支持AGC計劃相對應(yīng)的功率命令值;參與現(xiàn)貨市場,支持自動發(fā)電控制(AGC)功能,即實時響應(yīng)上層調(diào)度系統(tǒng)下發(fā)的儲能系統(tǒng)日前/實時調(diào)峰功率需求命令。
儲能電站與分布式電源、負(fù)荷聯(lián)合參與調(diào)度運(yùn)行,需要通過控制執(zhí)行相應(yīng)控制策略,協(xié)調(diào)不同能源和負(fù)荷的功率流動??紤]儲能、風(fēng)電、分布式光伏作為一個虛擬電廠主體,項目內(nèi)部優(yōu)化,整體預(yù)測出力計劃上報調(diào)度,調(diào)度命令僅下達(dá)至虛擬電廠總控??偪貙︼L(fēng)、光、儲電站進(jìn)行實時信息采集并統(tǒng)一調(diào)度。此運(yùn)行模式下,儲能系統(tǒng)運(yùn)行的主要目標(biāo)為彌補(bǔ)風(fēng)光發(fā)電實際出力與預(yù)測出力的偏差,提升虛擬電廠整體的出力精度。儲
能電站能量管理系統(tǒng)依據(jù)上層調(diào)度下發(fā)的當(dāng)日虛擬電廠調(diào)度計劃,通過控制儲能電站的充放電功率,實現(xiàn)跟蹤發(fā)電計劃的功能,控制虛擬電廠聯(lián)合功率輸出滿足計劃跟蹤要求。
在電網(wǎng)負(fù)荷低谷和高峰時段啟動儲能裝置進(jìn)行充放電,儲能系統(tǒng)削峰填谷功能實時響應(yīng)虛擬電廠總控下發(fā)的儲能系統(tǒng)功率需求命令,即實時滿足上層下發(fā)的削峰填谷計劃對應(yīng)的功率命令值,以保證削峰填谷的應(yīng)用效果。
1.3以集中式儲能為主體的虛擬電廠的作用
1.3.1提升調(diào)峰能力,保障用電
隨著社會經(jīng)濟(jì)的發(fā)展,社會用電需求日益增長,區(qū)域內(nèi)用電峰谷差也在不斷增大。2016年以來,浙江電網(wǎng)日峰谷差從2355萬 kW 增大至3436萬 kW,是峰谷差省份之一。傳統(tǒng)發(fā)電機(jī)組的調(diào)峰能力有限,已無法彌補(bǔ)日益擴(kuò)大的調(diào)峰缺口;而且,受風(fēng)電、光伏等新能源滲透率不斷提高的影響,區(qū)域內(nèi)電網(wǎng)調(diào)峰難度增加,電力靈活性調(diào)節(jié)需求不斷增加。
儲能作為新型電力系統(tǒng)的重要構(gòu)成要素,發(fā)揮著越來越重要的保供作用。以集中式儲能為主體的虛擬電廠,通過對區(qū)域內(nèi)可控負(fù)荷進(jìn)行調(diào)節(jié),對儲能充放電進(jìn)行控制,可以保障重要負(fù)荷的供電,減少電力匱乏對生產(chǎn)生活的影響。有大量案例證明,通過虛擬電廠,可以提高用電保障能力。2021年6月21日,平湖市縣域虛擬電廠,通過負(fù)荷預(yù)測,實現(xiàn)了負(fù)荷緊張異常預(yù)警;通過對域內(nèi)負(fù)荷的調(diào)控,在成本和影響的前提下,避免了平湖110kV永興變2號主變的負(fù)荷緊張異常事件。2021年8月29日,廣州市虛擬電廠在廣東電網(wǎng)廣州調(diào)控指令下,對公交充電公司下達(dá)調(diào)控指令,調(diào)整充電計劃,完成負(fù)荷資源的調(diào)節(jié),保障了高溫條件下2000戶家庭的空調(diào)用電。
1.3.2提升調(diào)頻能力,保障電網(wǎng)安全運(yùn)行
相比傳統(tǒng)同步機(jī)電源,新能源缺乏轉(zhuǎn)動慣量上的支撐。而隨著新能源滲透率的不斷提高,電力系統(tǒng)的轉(zhuǎn)動慣量水平降低,系統(tǒng)頻率穩(wěn)定性降低。根據(jù)發(fā)電機(jī)動能等值換算分析,通過對浙江省內(nèi)發(fā)電機(jī)慣性常數(shù)進(jìn)行評估后可知當(dāng)新能源裝機(jī)占比超過25%時,系統(tǒng)將出現(xiàn)慣量缺額,系統(tǒng)調(diào)頻能力也隨之逐步降低。傳統(tǒng)的調(diào)頻電源主要為火力發(fā)電機(jī)組,傳統(tǒng)機(jī)組響應(yīng)速度較慢,爬坡速度一般為每分鐘約1%~3%;同時,機(jī)組參與調(diào)頻會造成煤耗增加、設(shè)備損耗等問題。因此,傳統(tǒng)機(jī)組已無法滿足日益增長的調(diào)頻要求。
儲能系統(tǒng)響應(yīng)速度快、調(diào)節(jié)速率高,可在1s內(nèi)以99%以上的精度完成規(guī)定功率的輸出,其綜合AGC調(diào)節(jié)性能遠(yuǎn)超常規(guī)燃煤機(jī)組,因此規(guī)模化儲能為系統(tǒng)提供的慣量支撐和一次調(diào)頻能力可有效降低大功率缺額下電網(wǎng)頻率失穩(wěn)風(fēng)險和系統(tǒng)安全運(yùn)行風(fēng)險。而且儲能設(shè)備從零功率到滿功率僅需數(shù)秒,可以在電網(wǎng)故障情況下,提供緊急調(diào)頻支撐作用,提高交直流混聯(lián)系統(tǒng)的穩(wěn)定性。
1.3.3促進(jìn)新能源消納
新能源出力具有隨機(jī)性、間歇性的特征,儲能具有能量吞吐和時空轉(zhuǎn)移能力,結(jié)合新能源出力預(yù)測及調(diào)度日前計劃進(jìn)行有序充放,可以有效解決新能源波動性大、置信出力不足的問題,提高電力與電量平衡的協(xié)同度。
隨著新能源占比的不斷提高,新能源的消納壓力日益增大。要保持較好的新能源利用水平,需綜合采取火電靈活性改造、擴(kuò)大需求側(cè)響應(yīng)規(guī)模以及增加儲能裝機(jī)規(guī)模等措施。
以國內(nèi)某示范工程為例,對該工程風(fēng)儲系統(tǒng)運(yùn)行在VPP模式和一般模式以風(fēng)電、儲能分別單獨運(yùn)行的模式進(jìn)行對比。采用VPP運(yùn)行模式的風(fēng)儲系統(tǒng)可以緩解風(fēng)力發(fā)電廠并網(wǎng)帶來的備用容量增加問題,同時充分利用電池儲能系統(tǒng)和風(fēng)力發(fā)電廠的容量,顯著提高經(jīng)濟(jì)收益。
1.3.4提升電網(wǎng)運(yùn)行靈活性
隨著電力體制改革和能源結(jié)構(gòu)革命推進(jìn),貨市我國電力現(xiàn)場和售電市場開始啟動和開放,電網(wǎng)不斷向智能化和柔性化發(fā)展。儲能電站作為智能電網(wǎng)的關(guān)鍵組成部分,運(yùn)行靈活、啟動快、動態(tài)效益顯著,而且儲能可按四象限運(yùn)行,可為區(qū)域內(nèi)提供無功電壓調(diào)節(jié),減少電網(wǎng)無功設(shè)備的投資。例如一個100MW/200MWh的儲能電站接入500kV電網(wǎng)后,可提供調(diào)相容量±20萬kvar。儲能對優(yōu)化電網(wǎng)電源結(jié)構(gòu)、改善電網(wǎng)電壓水平、提高供電質(zhì)量、提升電網(wǎng)運(yùn)行靈活性、保證電網(wǎng)的安全穩(wěn)定運(yùn)行有很大作用。
2儲能系統(tǒng)設(shè)計
2.1儲能技術(shù)路線選擇
儲能能系技統(tǒng)術(shù)可路以線應(yīng)選用擇于電力系統(tǒng)調(diào)頻、調(diào)峰、緊急功率支撐等不同場景。不同應(yīng)用場景下,對儲能系統(tǒng)的容量、功率、響應(yīng)時間、調(diào)節(jié)速度等的要求所有區(qū)別。不同類型的儲能都有其優(yōu)勢,使其適用于某個應(yīng)用場景,因此儲能技術(shù)的發(fā)展呈現(xiàn)多元化,存在著電化學(xué)、機(jī)械、儲熱等技術(shù)種類繁多、特性各異的技術(shù)路線,新型儲能技術(shù),如超級電容、壓縮空氣、液流、鋰離子電池等也得到了不同程度的發(fā)展應(yīng)用。
以集中式儲能為主體的虛擬電廠要求儲能既要具備較大容量以提供區(qū)域內(nèi)用電支撐,又可以滿足調(diào)頻、調(diào)峰等輔助服務(wù)的需求,具備較快的響應(yīng)速度和較高的調(diào)節(jié)速率,因此虛擬電廠中的集中式儲能需要滿足不同時間尺度、不同大小的調(diào)節(jié)需求。本文從技術(shù)特性、經(jīng)濟(jì)性、安全性三個維度綜合考慮不同類型儲能在虛擬電廠的應(yīng)用情況。
技術(shù)特性方面,主要關(guān)注集成規(guī)模與可靠性、響應(yīng)速度、能量轉(zhuǎn)換效率等因素。目前,電化學(xué)儲能集成規(guī)模可達(dá)百兆瓦級,響應(yīng)速度可達(dá)百毫秒級,其中鋰離子電池儲能轉(zhuǎn)換效率可達(dá)85%~90%,鉛碳電池為70%~80%,液流電池一般低于65%,而機(jī)械儲能和儲熱技術(shù)可集成規(guī)模為兆瓦級至百兆瓦級,響應(yīng)速度為毫秒至分鐘級。
經(jīng)濟(jì)性方面,主要關(guān)注建設(shè)成本、使用壽命、運(yùn)維投入等因素。近來,鋰離子電池儲能建設(shè)成本快速下降至1800~2500元/(kWh)、循環(huán)壽命為6000~8000次(10~15年);鉛炭電池儲能的建設(shè)成本與鋰離子電池相當(dāng),但壽命僅為鋰離子電池的1/3;液流電池儲能循環(huán)壽命大于10000次,但建設(shè)成本為鋰離子電池的2倍以上,且維護(hù)成本較高。
安全性方面,各類新型儲能均有不同安全風(fēng)險。鋰離子電池存在熱失控以及由此引發(fā)的燃爆風(fēng)險,液流電池存在酸性有毒電解液的泄漏風(fēng)險,壓縮空氣儲能存在氣體的高壓力存儲安全風(fēng)險。從應(yīng)用現(xiàn)狀來看,鋰離子電池儲能占我國電化學(xué)儲能裝機(jī)規(guī)模的91%,安全風(fēng)險隨著多類型安全防護(hù)手段的應(yīng)用將得到進(jìn)一步控制。
根據(jù)項目需求,虛擬電廠中的集中式儲能以調(diào)峰輔助服務(wù)為主,調(diào)峰需求時常集中于2~3h。綜上,鋰離子電池系統(tǒng)轉(zhuǎn)換效率高、響應(yīng)速度快、成本合理、安全風(fēng)險可進(jìn)一步控制,具備大規(guī)模建設(shè)的條件,符合虛擬電廠需求,因此可采用鋰離子電池儲能系統(tǒng)。
2.2儲能系統(tǒng)集成設(shè)計要點
電化學(xué)儲能集成應(yīng)用方式直接影響電池運(yùn)行一致性、使用壽命、安全特性,是電化學(xué)儲能規(guī)模化安全可靠應(yīng)用的基礎(chǔ)。在設(shè)計儲能電站時,一般可以從交直流電壓等級、電池系統(tǒng)熱管理方式和廠站結(jié)構(gòu)等方面考慮。
2.2.1交直流電壓等級
根據(jù)交直流電壓等級不同,儲能電站的集成方式可分為低壓集成、高壓集成和級聯(lián)直掛,參數(shù)對比見表1。低壓集成一般是直流600~900V、交流380V經(jīng)變壓器升壓10kV(35kV)并網(wǎng)方案,目前該方案成熟度高、應(yīng)用規(guī)模廣。該電壓等級下,單個電池簇中電芯數(shù)量相對較少,電芯一致性問題對系統(tǒng)的影響相對較小,具有更高的可靠性,但相對于高壓集成方案,該方案能量密度與轉(zhuǎn)換效率偏低。
隨著技術(shù)的發(fā)展,高壓集成方案日益成熟。高壓集成一般是直流1000~1500V、交流550V或690V經(jīng)變壓器升壓10kV(35kV)并網(wǎng)。該電壓等級下,電池簇中電池數(shù)量增加,功率密度有效提升,相同容量占地更少,同時輔助系統(tǒng)設(shè)備成本降低,但隨著電芯數(shù)量的增加,一致性問題突出,對單芯電池、電池模組、電池簇的均壓、均流以及熱量管理提出了更高的要求,對系統(tǒng)設(shè)計也有更高要求。
另外,為了提升儲能能量轉(zhuǎn)換效率,部分商家研發(fā)并推出級聯(lián)高壓直掛儲能集成方案,儲能系統(tǒng)經(jīng)變流器輸出后,可不需變壓器直接接入10kV或35kV電網(wǎng)。該方案具備能量密度大、轉(zhuǎn)換效率高等特點,可用于大容量、高電壓接入儲能系統(tǒng)的實現(xiàn),但存在相間直流側(cè)儲能單元容量不均衡、直流鏈紋波分量、電池及附屬器件的高壓絕緣等問題,尚不具備規(guī)?;茝V條件。
根據(jù)集中式儲能的定位和應(yīng)用場景,考慮電站全壽命周期可靠運(yùn)行以及經(jīng)濟(jì)收益,通過對比不同電壓等級集成方案的技術(shù)成熟度、安全性、轉(zhuǎn)換效率、占地面積和成本,高壓集成應(yīng)用在虛擬電廠的集中式儲能中具有一定的技術(shù)優(yōu)勢。
2.2.2電池系統(tǒng)熱管理方式
電池系統(tǒng)的熱管理技術(shù),主要是根據(jù)電池佳工作溫度范圍,通過對電池的排列方式、冷卻方式以及控制系統(tǒng)進(jìn)行設(shè)計來有效地對電池系統(tǒng)進(jìn)行溫度調(diào)節(jié)、保證電池的適宜工作溫度、降低電池組中電池間的溫度差異以及對有害的氣體及時通風(fēng)等,以提高系統(tǒng)的運(yùn)行效率、安全性能。其中,冷卻方式的選擇對電池溫升和溫差具有較大影響,目前儲能系統(tǒng)常用冷卻技術(shù)主要有風(fēng)冷、液冷以及特殊應(yīng)用場景下的相變材料冷卻等。
風(fēng)冷結(jié)構(gòu)簡單、成本低及易于維護(hù),是目前應(yīng)用廣泛的冷卻方法,但存在效率較低、噪聲較大等問題。隨著電池系統(tǒng)向高能量密度方向發(fā)展,電池組內(nèi)電池間距越來越小,風(fēng)冷的弊端越來越明顯。相較于風(fēng)冷,液冷具有更高的冷卻效率,可以有效降低電池的高溫度,改善電池組溫度的一致性。而液冷成本較高、功耗較大,目前在動力電池領(lǐng)域應(yīng)用較多。
相變材料冷卻可以很好地控制電池系統(tǒng)溫度場的均一性,但目前還處于實驗室驗證階段,大規(guī)模工業(yè)化應(yīng)用體系尚不成熟。
從技術(shù)成熟度、安全性、Pack防護(hù)等級、電池溫差、電池一致性、輔助運(yùn)行功耗、運(yùn)行效率、能量密度、維護(hù)難度、經(jīng)濟(jì)性等角度對電池系統(tǒng)熱管理方式進(jìn)行對比分析。風(fēng)冷系統(tǒng)應(yīng)用時間長、案列多,并且在安全性、單體電池溫度分布以及電池電場分布方面具有優(yōu)勢,但是液冷方案在電池一致性、輔助運(yùn)行功耗、運(yùn)行效率、能量密度等方面具有優(yōu)勢,同時液冷方案也是儲能的未來發(fā)展趨勢之一。綜合考慮項目的經(jīng)濟(jì)性、安全性以及科技示范性,液冷方案具有一定的技術(shù)優(yōu)勢。
2.2.3廠站結(jié)構(gòu)
為保障儲能系統(tǒng)良好的運(yùn)行環(huán)境和維護(hù)條件,國內(nèi)外電化學(xué)儲能電站建設(shè)主要采用廠房式或預(yù)制艙式兩種形式。廠房式集成存在建設(shè)周期長、地理位置不靈活、建設(shè)所需基礎(chǔ)設(shè)施較多等問題,在新建儲能電站中的應(yīng)用越來較少,因此一般采用預(yù)制艙式集成。
預(yù)制艙式集成分為步入式和非步入式兩種。步入式方案采用雙列面對面方式布置電池簇,預(yù)留人員通道,人員可進(jìn)入預(yù)制艙內(nèi)部進(jìn)行日常運(yùn)維巡檢。預(yù)制艙系統(tǒng)整體的防水防腐性能較好,日常運(yùn)維時環(huán)境對設(shè)備的安全性影響較小;但人員通道占用艙內(nèi)空間,系統(tǒng)能量密度較低。非步入式方案采用雙列背靠背的方式布置電池簇,預(yù)制艙體側(cè)墻板采取對外開門的方式,人員在箱體外部進(jìn)行維護(hù)工作。運(yùn)維人員安全風(fēng)險低但由于采用多門設(shè)計,艙體密閉性不好,且外部維修通道較艙內(nèi)通道占地增加,整站空間利用率降低。
在分析站址地形、地址、廠區(qū)面積、施工周期的情況下,綜合考慮儲能能量密度和整站空間利用率,對廠站結(jié)構(gòu)進(jìn)行設(shè)計。本項目的集中式儲能采用非步入式預(yù)制艙方案具有一定的優(yōu)勢。
2.2.4小結(jié)
儲能系統(tǒng)的集成設(shè)計關(guān)系到儲能系統(tǒng)的安全穩(wěn)定運(yùn)行。虛擬電廠中的集中式儲能具有規(guī)模大、輔助服務(wù)要求高、調(diào)節(jié)頻繁的特點,在儲能系統(tǒng)集成設(shè)計時應(yīng)根據(jù)項目情況對電壓等級、熱管理方式以及場站結(jié)構(gòu)等方面進(jìn)行技術(shù)分析,選擇具有優(yōu)勢的方案。綜合考慮本項目場地條件及經(jīng)濟(jì)性需求,建議項目選擇效率更高、能量密度更大的高壓液冷系統(tǒng)非步入式預(yù)制艙集成。
3安科瑞Acrel-2000MG微電網(wǎng)能量管理系統(tǒng)
3.1概述
Acrel-2000MG儲能能量管理系統(tǒng)是安科瑞專門針對工商業(yè)儲能電站研制的本地化能量管理系統(tǒng),可實現(xiàn)了儲能電站的數(shù)據(jù)采集、數(shù)據(jù)處理、數(shù)據(jù)存儲、數(shù)據(jù)查詢與分析、可視化監(jiān)控、報警管理、統(tǒng)計報表、策略管理、歷史曲線等功能。其中策略管理,支持多種控制策略選擇,包含計劃曲線、削峰填谷、需量控制、防逆流等。該系統(tǒng)不僅可以實現(xiàn)下級各儲能單元的統(tǒng)一監(jiān)控和管理,還可以實現(xiàn)與上級調(diào)度系統(tǒng)和云平臺的數(shù)據(jù)通訊與交互,既能接受上級調(diào)度指令,又可以滿足遠(yuǎn)程監(jiān)控與運(yùn)維,確保儲能系統(tǒng)安全、穩(wěn)定、可靠、經(jīng)濟(jì)運(yùn)行。
3.2應(yīng)用場景
適用于工商業(yè)儲能電站、新能源配儲電站。
3.3系統(tǒng)結(jié)構(gòu)
3.4系統(tǒng)功能
3.4.1實時監(jiān)管
對微電網(wǎng)的運(yùn)行進(jìn)行實時監(jiān)管,包含市電、光伏、風(fēng)電、儲能、充電樁及用電負(fù)荷,同時也包括收益數(shù)據(jù)、天氣狀況、節(jié)能減排等信息。
3.4.2優(yōu)化控制
通過分析歷史用電數(shù)據(jù)、天氣條件對負(fù)荷進(jìn)行功率預(yù)測,并結(jié)合分布式電源出力與儲能狀態(tài),實現(xiàn)經(jīng)濟(jì)優(yōu)化調(diào)度,以降低尖峰或者高峰時刻的用電量,降低企業(yè)綜合用電成本。
3.4.3收益分析
用戶可以查看光伏、儲能、充電樁三部分的每天電量和收益數(shù)據(jù),同時可以切換年報查看每個月的電量和收益。
3.4.4能源分析
通過分析光伏、風(fēng)電、儲能設(shè)備的發(fā)電效率、轉(zhuǎn)化效率,用于評估設(shè)備性能與狀態(tài)。
3.4.5策略配置
微電網(wǎng)配置主要對微電網(wǎng)系統(tǒng)組成、基礎(chǔ)參數(shù)、運(yùn)行策略及統(tǒng)計值進(jìn)行設(shè)置。其中策略包含計劃曲線、削峰填谷、需量控制、新能源消納、逆功率控制等。
4硬件及其配套產(chǎn)品
序號 | 設(shè)備 | 型號 | 圖片 | 說明 |
1 | 能量管理系統(tǒng) | Acrel-2000MG |
| 內(nèi)部設(shè)備的數(shù)據(jù)采集與監(jiān)控,由通信管理機(jī)、工業(yè)平板電腦、串口服務(wù)器、遙信模塊及相關(guān)通信輔件組成。 數(shù)據(jù)采集、上傳及轉(zhuǎn)發(fā)至服務(wù)器及協(xié)同控制裝置 策略控制:計劃曲線、需量控制、削峰填谷、備用電源等 |
2 | 顯示器 | 25.1英寸液晶顯示器 |
| 系統(tǒng)軟件顯示載體 |
3 | UPS電源 | UPS2000-A-2-KTTS |
| 為監(jiān)控主機(jī)提供后備電源 |
4 | 打印機(jī) | HP108AA4 |
| 用以打印操作記錄,參數(shù)修改記錄、參數(shù)越限、復(fù)限,系統(tǒng)事故,設(shè)備故障,保護(hù)運(yùn)行等記錄,以召喚打印為主要方式 |
5 | 音箱 | R19U |
| 播放報警事件信息 |
6 | 工業(yè)網(wǎng)絡(luò)交換機(jī) | D-LINKDES-1016A16 |
| 提供16口百兆工業(yè)網(wǎng)絡(luò)交換機(jī)解決了通信實時性、網(wǎng)絡(luò)安全性、本質(zhì)安全與安全防爆技術(shù)等技術(shù)問題 |
7 | GPS時鐘 | ATS1200GB |
| 利用gps同步衛(wèi)星信號,接收1pps和串口時間信息,將本地的時鐘和gps衛(wèi)星上面的時間進(jìn)行同步 |
8 | 交流計量電表 | AMC96L-E4/KC |
| 電力參數(shù)測量(如單相或者三相的電流、電壓、有功功率、無功功率、視在功率,頻率、功率因數(shù)等)、復(fù)費(fèi)率電能計量、 四象限電能計量、諧波分析以及電能監(jiān)測和考核管理。多種外圍接口功能:帶有RS485/MODBUS-RTU協(xié)議:帶開關(guān)量輸入和繼電器輸出可實現(xiàn)斷路器開關(guān)的"遜信“和“遙控"的功能 |
9 | 直流計量電表 | PZ96L-DE |
| 可測量直流系統(tǒng)中的電壓、電流、功率、正向與反向電能??蓭S485通訊接口、模擬量數(shù)據(jù)轉(zhuǎn)換、開關(guān)量輸入/輸出等功能 |
10 | 電能質(zhì)量監(jiān)測 | APView500 |
| 實時監(jiān)測電壓偏差、頻率俯差、三相電壓不平衡、電壓波動和閃變、諾波等電能質(zhì)量,記錄各類電能質(zhì)量事件,定位擾動源。 |
11 | 防孤島裝置 | AM5SE-IS |
| 防孤島保護(hù)裝置,當(dāng)外部電網(wǎng)停電后斷開和電網(wǎng)連接 |
12 | 箱變測控裝置 | AM6-PWC |
| 置針對光伏、風(fēng)能、儲能升壓變不同要求研發(fā)的集保護(hù),測控,通訊一體化裝置,具備保護(hù)、通信管理機(jī)功能、環(huán)網(wǎng)交換機(jī)功能的測控裝置 |
13 | 通信管理機(jī) | ANet-2E851 |
| 能夠根據(jù)不同的采集規(guī)的進(jìn)行水表、氣表、電表、微機(jī)保護(hù)等設(shè)備終端的數(shù)據(jù)果集匯總: 提供規(guī)約轉(zhuǎn)換、透明轉(zhuǎn)發(fā)、數(shù)據(jù)加密壓縮、數(shù)據(jù)轉(zhuǎn)換、邊緣計算等多項功能:實時多任務(wù)并行處理數(shù)據(jù)采集和數(shù)據(jù)轉(zhuǎn)發(fā),可多鏈路上送平臺據(jù): |
14 | 串口服務(wù)器 | Aport |
| 功能:轉(zhuǎn)換“輔助系統(tǒng)"的狀態(tài)數(shù)據(jù),反饋到能量管理系統(tǒng)中。 1)空調(diào)的開關(guān),調(diào)溫,及完*斷電(二次開關(guān)實現(xiàn)) 2)上傳配電柜各個空開信號 3)上傳UPS內(nèi)部電量信息等 4)接入電表、BSMU等設(shè)備 |
15 | 遙信模塊 | ARTU-K16 |
| 1)反饋各個設(shè)備狀態(tài),將相關(guān)數(shù)據(jù)到串口服務(wù)器: 讀消防VO信號,并轉(zhuǎn)發(fā)給到上層(關(guān)機(jī)、事件上報等) 2)采集水浸傳感器信息,并轉(zhuǎn)發(fā) 3)給到上層(水浸信號事件上報) 4)讀取門禁程傳感器信息,并轉(zhuǎn)發(fā) |
5結(jié)語
以集中式儲能為主體,聚合周邊分布式資源形成的虛擬電廠,通過資源的整合和調(diào)控,促進(jìn)電網(wǎng)從“源隨荷動"轉(zhuǎn)化為“源荷互動"。以集中式儲能為主體的虛擬電廠可以直接接收電網(wǎng)調(diào)度或者作為三方獨立主體參與輔助服務(wù)。大規(guī)模儲能可以提供大量實時可調(diào)的平穩(wěn)出力,有效緩解電力供應(yīng)短缺問題,提供電網(wǎng)調(diào)峰、調(diào)頻、緊急功率支撐等服務(wù),并增強(qiáng)新能源消納能力,為高比例新能源的接入提供安全保障,為實現(xiàn)“碳達(dá)峰·碳中和"戰(zhàn)略目標(biāo)提供支撐。針對虛擬電廠集中式儲能電站的集成設(shè)計,可以通過綜合分析,選擇交直流電壓等級、電池系統(tǒng)熱管理方式和廠站結(jié)構(gòu),使得儲能系統(tǒng)集成設(shè)計滿足項目定位和應(yīng)用場景要求。
參考文獻(xiàn):
[1]王天旺,高赟,姜孟,等.虛擬電廠下計及分布式風(fēng)電與儲能系統(tǒng)的電力系統(tǒng)優(yōu)化調(diào)度[J].電力建設(shè),2016,37(11):108-114.
[2]孫晶琪4,王愿,郭曉慧,等.考慮環(huán)境外部性和風(fēng)光出力不確定性的虛擬電廠運(yùn)行優(yōu)化[J].電力系統(tǒng)自動化,2022,46(8):50-59.
[3]應(yīng)飛祥,徐天奇,李琰,等.含電動汽車充電站商業(yè)型虛擬電廠的日前調(diào)度優(yōu)化策略研究
[J].電力系統(tǒng)保護(hù)與控制,2020,48(21):92-100.
[4]韋立坤,趙波,吳紅斌,等.虛擬電廠下計及大規(guī)模分布式光伏的儲能系統(tǒng)配置優(yōu)化模型
[J].電力系統(tǒng)自動化,2015,39(23):66-74.
[5]袁桂麗,蘇偉芳.計及電動汽車不確定性的虛擬電廠參與AGC調(diào)頻服務(wù)研究[J].電網(wǎng)技術(shù),2020,44(7):2538-2548.
[6]閆濤,渠展展,惠東,等.含規(guī)?;姵貎δ芟到y(tǒng)的商業(yè)型虛擬電廠經(jīng)濟(jì)性分析[J].電力系統(tǒng)自動化,2014(17):98-104.
[7]呂一農(nóng),基于虛擬電廠的儲能電站設(shè)計研究。
[8]安科瑞企業(yè)微電網(wǎng)設(shè)計與應(yīng)用手冊.2022年05版
[9]安科瑞Acrel2000ES儲能能量管理系統(tǒng)選型手冊.2024年04版
[10]安科瑞光儲充微電網(wǎng)系統(tǒng)解決方案.2024年04版