0引言
近年來,隨著全球經(jīng)濟的快速發(fā)展,大量化石能源被開采使用,對環(huán)境造成污染,而電動汽車因具有環(huán)保、低碳等優(yōu)點得以快速發(fā)展,據(jù)《電動汽車發(fā)展戰(zhàn)略研究報告》數(shù)據(jù)預(yù)測,2030年我國電動汽車保有量將達到6000萬輛。電動汽車數(shù)量的增加可以有效減少對傳統(tǒng)能源的使用,但電動汽車大量接入電網(wǎng)勢必會帶來諸多影響,如加劇負(fù)荷波動、增大負(fù)荷峰谷差、減少電網(wǎng)設(shè)備壽命等。因此研究電動汽車有序充電策略具有重要意義和實用價值。
目前,國內(nèi)外已經(jīng)針對電動汽車有序充電策略開展了相關(guān)研究。以變壓器容量等為約束條件、以充電站經(jīng)營成本低為目標(biāo)建立有序充電模型。在分時電價的基礎(chǔ)上,提出一種基于動態(tài)分時電價的電動汽車有序充電方法,引導(dǎo)車主有序充電,平抑配電網(wǎng)負(fù)荷波動。以上研究僅針對單一目標(biāo)進行優(yōu)化,未考慮多方利益。充分考慮到用戶多方面需求,提出了基于優(yōu)劣解距離法的電動汽車有序充電優(yōu)化策略,該策略既能節(jié)約用戶充電成本,又能實現(xiàn)電力負(fù)荷削峰填谷的目標(biāo)。以配電網(wǎng)與充電站交互功率、充電站運營收益兩方面為目標(biāo),建立充電站調(diào)度模型,減小電池的損耗與放電成本。但上述研究都未考慮新能源出力的情況。針對分布式能源出力具有隨機性等問題,構(gòu)建了多目標(biāo)兩階段優(yōu)化模型,平抑了分布式能源出力波動,同時降低了用戶充電成本。針對電動汽車的入網(wǎng)問題,提出了含分布式電源和電動汽車充電的優(yōu)化重構(gòu)模型,在IEEE33節(jié)點標(biāo)準(zhǔn)配電系統(tǒng)中進行仿真驗證。但上述研究未考慮加入儲能裝置提高分布式能源的就地消納。借助住宅小區(qū)的有序充電控制系統(tǒng),利用分時電價調(diào)節(jié)電動汽車充電負(fù)荷,達到用戶側(cè)和電網(wǎng)側(cè)利益的目的,但文中的集中式調(diào)度架構(gòu)在面對大規(guī)模電動汽車接入時,容易因計算量大而導(dǎo)致響應(yīng)速度慢等問題。
綜上所述,現(xiàn)有研究存在以下問題:1)優(yōu)化目標(biāo)單一,缺乏對用戶、電網(wǎng)等多方面利益的考慮;2)沒有考慮加入分布式能源和儲能設(shè)備來提高用戶響應(yīng)策略的積極性和分布式能源的就地消納;3)現(xiàn)有的集中式調(diào)度架構(gòu)在大規(guī)模電動汽車接入的情況下,存在計算資源緊張、響應(yīng)速度慢的問題。鑒于上述問題,本文針對包含光伏單元和儲能單元的社區(qū), 以光儲充一體化社區(qū)為例,提出了一種基于鼠群優(yōu)化算法(ratswarmoptimizer,RSO)的雙層多目標(biāo)有序充電策略,在光伏充分消納的情況下,考慮用戶側(cè)和電網(wǎng)側(cè)的利益,有助于負(fù)荷的削峰填谷,降低峰谷差,同時減少充電費用。此外設(shè)計了基于云邊協(xié)同的調(diào)度架構(gòu),有效利用邊緣側(cè)的計算能力,降低云端側(cè)面對大規(guī)模數(shù)據(jù)的計算壓力。
1光儲充一體化社區(qū)無序充電分析
1.1光儲充一體化社區(qū)系統(tǒng)結(jié)構(gòu)
如圖1所示,光儲充一體化社區(qū)系統(tǒng)由光伏單元、儲能單元和變壓器等組成。其中箭頭表示電能的流向,光伏單元和電網(wǎng)提供電能,充電樁和常規(guī)負(fù)荷消耗電能。其中儲能單元比較特殊,既能提供電能,也能消耗電能,為了后續(xù)簡化充電模型,把儲能單元看作負(fù)荷消耗電能,計算時儲能單元若處于充電狀態(tài),則功率為正,反之功率為負(fù)。
圖1光儲充一體化社區(qū)系統(tǒng)結(jié)構(gòu)
當(dāng)光伏出力大于充電負(fù)荷時,光伏單元先對充電樁供電,其次向儲能單元供電,若有富余再流向常規(guī)負(fù)荷;當(dāng)光伏出力小于充電負(fù)荷時,儲能單元對充電樁進行供電,充電負(fù)荷的差額由電網(wǎng)提供。
1.2社區(qū)無序充電負(fù)荷模型
單個居民的充電行為是隨機的和無序的,但從整體而言,充電規(guī)律會受到社區(qū)居民生活習(xí)慣和出行規(guī)律的影響。本文以2017年美國交通部對全美家用轎車出行的統(tǒng)計結(jié)果為依據(jù),并結(jié)合中美出行時段差異做了一定程度的調(diào)整,使之更符合我國居民用戶的出行情況。
調(diào)整之后居民回家時間的概率密度函數(shù)為
式中:xs為居民回家時間;期望值?s?18.74;標(biāo)準(zhǔn)差? s? 3.41。假設(shè)居民回家就開始充電,即可以把回家時間看作電動汽車開始充電時間。調(diào)整之后居民離家時間的概率密度函數(shù)為
式中:xe為居民離家時間;期望值?e? 7.92;標(biāo)準(zhǔn)差? e? 3.24。假設(shè)居民離家才結(jié)束充電,即可以把離家時間看作電動汽車結(jié)束充電時間。
電動汽車日行駛里程的概率密度函數(shù)為
式中:d為電動汽車日行駛里程;期望值?d? 3.2;標(biāo)準(zhǔn)差? d?0.88。
居民出行規(guī)律概率密度分布如圖2所示。
圖2居民出行規(guī)律概率密度分布
從圖2可以看出:電動汽車開始充電時間集中在16:00—21:00,結(jié)束充電時間集中在06:00—10:00,日行駛里程集中在50km以內(nèi)。
1.3無序充電負(fù)荷模擬
本文采用蒙特卡洛法模擬社區(qū)居民的無序充電行為。假設(shè)電動汽車每天充電一次,直到充滿為止,整個充電過程近似為恒功率充電,并選擇更適合社區(qū)的常規(guī)充電方式。電動汽車無序充電負(fù)荷模擬流程如圖3所示,具體步驟如下。
圖3無序充電負(fù)荷模擬流程
1)輸入大仿真次數(shù)和電動汽車總數(shù)量,并進行初始化;
2)根據(jù)前文提到的概率模型,隨機生成車主充電開始時間、結(jié)束時間和日行駛里程;
3)結(jié)合電動汽車相關(guān)參數(shù)計算得到充電電量,并累加得到充電負(fù)荷;
4)當(dāng)完成所有電動汽車充電負(fù)荷的計算后,進行下一次仿真,仿真次數(shù)達到大值后,取平均值輸出電動汽車無序充電負(fù)荷曲線。
1.4社區(qū)無序充電仿真分析
社區(qū)電動汽車無序充電負(fù)荷和儲能單元、光伏單元出力情況如圖4(a)所示,三者再和社區(qū)常規(guī)負(fù)荷疊加得到無序充電下的社區(qū)負(fù)荷,如圖4(b)所示。
從圖4中可以看出:光伏單元出力時間集中在在08:00—17:00,期間光伏發(fā)電量可以覆蓋充電負(fù)荷和儲能單元的消耗,剩下的再供給社區(qū)常規(guī)負(fù)荷使用,無須上網(wǎng),減少傳輸時的損耗,實現(xiàn)就地消納。但充電負(fù)荷集中的時間段正好是常規(guī)負(fù)荷的高峰時間段,容易“峰上加峰",進一步增加峰谷差,加劇電網(wǎng)負(fù)荷波動。此時儲能單元可以放電,對充電樁供電,降低負(fù)荷峰值。
圖4無序充電仿真結(jié)果
在18:00—22:00這一時間段,社區(qū)負(fù)荷已經(jīng)超過變壓器有功功率上限,使變壓器處于過載狀態(tài),損害其使用壽命。和普通社區(qū)相比,光儲充一體化社區(qū)的負(fù)荷峰值和越*時間都有一定程度降低,但仍未解決社區(qū)負(fù)荷越限和波動大的問題,影響居民的安全用電,亟需對電動汽車充電行為開展有序調(diào)度研究。
2基于鼠群優(yōu)化算法的雙層多目標(biāo)有序充電策略
2.1雙層多目標(biāo)有序充電策略
本策略提出了社區(qū)負(fù)荷峰谷差和用戶充電費用小的雙層多目標(biāo)優(yōu)化模型。一層是電網(wǎng)層,將降低社區(qū)負(fù)荷峰谷差作為優(yōu)化目標(biāo);二層是用戶層,將減少用戶充電費用作為優(yōu)化目標(biāo),并把電網(wǎng)層優(yōu)化結(jié)果作為本層優(yōu)化模型的約束條件,減少用戶充電費用,同時考慮社區(qū)負(fù)荷平穩(wěn)性。雙層多目標(biāo)有序充電策略具體流程如圖5所示。
圖5雙層多目標(biāo)有序充電策略流程
1)獲取未來24h社區(qū)常規(guī)負(fù)荷和光伏出力預(yù)測數(shù)據(jù),動態(tài)獲取用戶充電信息,包括開始充電時間、結(jié)束充電時間、充電量等;
2)當(dāng)某時段有新車接入或用戶改變充電信息時,電網(wǎng)層根據(jù)社區(qū)負(fù)荷峰谷差小的優(yōu)化目標(biāo)求解并輸出用戶開始充電時間、光伏的充放電功率和充電負(fù)荷;
3)電網(wǎng)層輸出的充電負(fù)荷作為用戶層優(yōu)化模型的約束條件,用戶層根據(jù)用戶充電費用小的優(yōu)化目標(biāo)求解并輸出用戶開始充電時間、光伏的充放電功率;
4)重復(fù)步驟2)和3),達到大迭代次數(shù),輸出新的充電計劃;
5)若沒有新車接入或用戶改變充電信息,則遵循上一時段充電計劃;
6)重復(fù)步驟2)—步驟5),直到優(yōu)化時段達到大時段數(shù)。
2.2電網(wǎng)層優(yōu)化模型
2.2.1目標(biāo)函數(shù)
電網(wǎng)層的優(yōu)化目標(biāo)是降低社區(qū)負(fù)荷峰谷差,目標(biāo)函數(shù)為
式中,Pall為總負(fù)荷。
2.2.2約束條件
1)功率平衡約束
式中:Ppva為光伏出力功率;Pc為充電負(fù)荷;Pg為常規(guī)負(fù)荷;Ps為儲能單元充放電功率。
2)總負(fù)荷限制約束
式中:Pmax為社區(qū)變壓器的大有功功率;PR為社區(qū)變壓器的額定容量;?R為功率因數(shù)。式(6)代表社區(qū)總負(fù)荷不能超過社區(qū)變壓器的大有功功率。
3)用戶充電需求約束
充電時間約束為
式中:Timin為i輛電動汽車充滿電的短時間,即按大功率進行充電需要的時間;Tineedi輛電動汽車充滿電需要的充電時長;T imax為/輛電動汽車的長充電時間,即車主回家到離家之間的時間;S ?st為i輛電動汽車開始充電時的電池荷電狀態(tài);di為i輛電動汽車的日行駛里程;E100為電動汽車百公里耗電量;B為電池的額定容量;Pcs為充電樁的額定充電功率。
電池電量約束為
式中,Siend為i輛電動汽車結(jié)束充電時電池的荷電狀態(tài)。
. 儲能單元約束
儲能單元充放電功率約束為
式中,Psmax為大充放電功率。
儲能單元容量約束為
式中:Bcmax為儲能單元大容量;Bc為儲能單元實際容量。
2.3用戶層優(yōu)化模型
2.3.1目標(biāo)函數(shù)
社區(qū)的電力來自光伏單元和配電網(wǎng),充電費用也來自這兩部分,其余充電設(shè)施建設(shè)的費用暫不考慮,充電費用目標(biāo)函數(shù)為
式中:Pipvc為i個時段的光伏單元在電動汽車和儲能單元上的輸出功率;Rpv為光伏的單位發(fā)電成本;P為i個時段電網(wǎng)在電動汽車和儲能單元上的輸出功率;Ri為i個時段的分時電價;?t為單位時段;Pipva為i個時段的光伏出力功率;Pic為i個時段的充電負(fù)荷;Pis為i個時段的儲能單元充放電功率。
2.3.2約束條件
式中Pic1為電網(wǎng)層輸出i個時段的充電負(fù)荷;Pic2為用戶層輸出i個時段的充電負(fù)荷。
其余約束條件和2.2.2節(jié)相同。
2.4優(yōu)化模型求解方法
電動汽車雙層多目標(biāo)有序充電優(yōu)化模型優(yōu)化對象眾多,且存在多個約束條件,傳統(tǒng)方法求解困難。本文采用鼠群優(yōu)化算法進行求解。鼠群優(yōu)化算法是一種新型群智能優(yōu)化算法,在局部搜索和全局搜索之間實現(xiàn)動態(tài)平衡,避免了粒子群算法容易陷入局部優(yōu)的問題。
鼠群優(yōu)化算法通過模擬鼠群的捕食行為,將鼠群的捕食行為分為兩個過程——追逐獵物和攻擊獵物,并進行數(shù)學(xué)建模。
在鼠群追逐獵物過程中,假設(shè)鼠群中的優(yōu)個體知道獵物的位置,鼠群中的其他個體便可以通過優(yōu)個體來更新自己的位置,更新策略如式(18)和式(20)所示。
式中:Pti為獵物對于i只老鼠來說的位置;A為自身權(quán)重;Xti為i只老鼠;xtbest
為鼠群中的優(yōu)個體;t為當(dāng)前迭代次數(shù);C為0~2之間的隨機數(shù);R為1~5之間的隨機數(shù)。
在攻擊獵物過程中,算法從數(shù)學(xué)上定義老鼠與獵物的打斗過程,老鼠位置更新公式為
式中,Xit+1是i只老鼠在下一次迭代中的位置。
鼠群優(yōu)化算法通過模擬鼠群追逐獵物和攻擊獵物的行為,并通過調(diào)整式(18)中的參數(shù)A和C使老鼠到達不同的位置,完成對搜索空間的搜索。本文利用鼠群優(yōu)化算法對優(yōu)化模型進行求解,得到優(yōu)充電計劃,包含電動汽車開始充電時間和儲能單元充放電功率,具體流程如圖6所示。
圖6鼠群優(yōu)化算法流程
2.5基于云邊協(xié)同的調(diào)度架構(gòu)
目前電動汽車有序充電調(diào)度主要采取集中式調(diào)度架構(gòu),但在面對大規(guī)模電動汽車接入電網(wǎng)時,云主站往往會因為數(shù)據(jù)龐大導(dǎo)致計算時間過長,甚至出現(xiàn)錯誤。對此,在配電網(wǎng)“云管邊端"的建設(shè)模式基礎(chǔ)上,基于云邊協(xié)同設(shè)計有序充電調(diào)度架構(gòu),如圖7所示。
圖7基于云邊協(xié)同的調(diào)度架構(gòu)
基于云邊協(xié)同的調(diào)度架構(gòu)由感知端側(cè)、邊緣側(cè)和云端側(cè)構(gòu)成,具體調(diào)度流程如下。
1)用戶通過手機APP將預(yù)設(shè)充電開始時間、結(jié)束時間等充電信息發(fā)送給云平臺;
2)云主站從云平臺獲取用戶充電信息,從智能融合終端獲取儲能單元和充電樁的狀態(tài)信息,并匯集未來24h的光伏出力、社區(qū)負(fù)荷預(yù)測數(shù)據(jù);
3)云主站內(nèi)電網(wǎng)層優(yōu)化模型求解得到電動汽車開始充電時間、儲能單元充放電功率和充電負(fù)荷,然后將參數(shù)下發(fā)至邊緣側(cè);
4)智能融合終端內(nèi)部署用戶層優(yōu)化模型,接收參數(shù)并進行求解,并將參數(shù)上傳回云端側(cè);
5)重復(fù)步驟3)和4),直到達到設(shè)置的大迭代次數(shù),輸出充電計劃;
6)智能融合終端內(nèi)有序充電APP將充電計劃控制指令下發(fā)到感知端側(cè)設(shè)備。
3算例分析
3.1參數(shù)設(shè)置
本文以湖南某光儲充一體化社區(qū)為研究對象,其中詳細參數(shù)如下。
1)光伏單元容量200kW,平均發(fā)電成本為0.35元/kWh。
2)儲能單元容量為200kWh,大充放電功率為50kW/h,大放電深度為90%。
3)配電網(wǎng)變壓器額定容量為1000kVA,功率因數(shù)為0.9。
4)社區(qū)內(nèi)有300戶居民,假設(shè)每戶一輛車,且擁有電動汽車的用戶配置一個充電樁;電動汽車滲透率為50%,即電動汽車150輛。單臺電動汽車電池額定容量為50kWh,類型為鋰電池,百公里耗電量為25kWh;充電樁額定充電功率為7kW/h。
以1h為時間間隔,即?t=1,當(dāng)?shù)胤謺r電價如表1所示。
3.2結(jié)果分析
本文以普通社區(qū)無序充電、光儲充一體化社區(qū)無序充電、電網(wǎng)層有序充電、用戶層有序充電、雙層多目標(biāo)有序充電等5種充電場景為例進行仿真分析。
1)5種充電場景下充電負(fù)荷和社區(qū)負(fù)荷
普通社區(qū)無序充電和光儲充一體化社區(qū)無序充電的仿真結(jié)果見圖4,由圖4中可以看出,社區(qū)雖然配備了光儲單元,但在無序充電下仍然無法有效解決社區(qū)負(fù)荷越限和波動大的問題。
電網(wǎng)層有序充電、用戶層有序充電和雙層多目標(biāo)有序充電的仿真結(jié)果如圖8—圖10所示。
圖8電網(wǎng)層有序充電
由圖8可以看出:電網(wǎng)層有序充電可以在保證用戶正常充電需求的情況下,將充電負(fù)荷轉(zhuǎn)移到電價低谷時期,從而實現(xiàn)削峰填谷。但隨著接入電動汽車數(shù)量的增加,勢必會將更多的充電負(fù)荷轉(zhuǎn)移到電價平時段,增加充電費用,降低用戶響應(yīng)有序充電策略的積極性。
圖9用戶層有序充電
由圖9可以看出:用戶層有序充電同樣可以在保證用戶正常充電需求的情況下,將充電負(fù)荷轉(zhuǎn)移到電價低谷時段和光伏出力時段,從而減少充電費用。此外,儲能單元也可以保障電價高峰時段零星的充電需求,但充電負(fù)荷容易在電價低谷時段形成新的高峰,加劇負(fù)荷的波動,影響電網(wǎng)的正常運行。
圖10雙層多目標(biāo)有序充電
由圖10可以看出:雙層多目標(biāo)有序充電的充電負(fù)荷分布范圍更大,既能充分發(fā)揮充電負(fù)荷削峰填谷的作用,降低負(fù)荷峰谷差,也能減少用戶充電費用。
2)5種充電場景下負(fù)荷波動對比分析
對社區(qū)電動汽車執(zhí)行無序和有序充電策略的社區(qū)負(fù)荷情況進行對比分析,具體數(shù)據(jù)如表2所示。
由表2可以看出:無序充電時,由于“峰上加峰"的現(xiàn)象,社區(qū)負(fù)荷超過變壓器的有功功率上限,使變壓器處于過載狀態(tài),負(fù)荷峰值和峰谷差率分別達到970.89kW和54.25%。光儲充一體化社區(qū)依靠光伏系統(tǒng)和儲能系統(tǒng)雖然能降低負(fù)荷峰值和峰谷差率,分別減少了45.23kW和2.23%,但依然不能解決社區(qū)負(fù)荷越限問題。
而3種有序充電策略均能有效降低負(fù)荷峰谷差,且負(fù)荷峰值都未超過上限900kW,其中電網(wǎng)層有序充電和雙層多目標(biāo)有序充電效果較好,和光儲充一體化社區(qū)無序充電相比,峰谷差分別降低了223.34kW和194.89kW,峰谷差率分別降低了20.81%和17.37%。
3)5種充電場景下用戶充電費用對比分析
對社區(qū)電動汽車執(zhí)行無序和有序充電策略的社區(qū)充電情況進行對比分析,具體數(shù)據(jù)如表3所示。
結(jié)合圖4、圖8—圖10,由表3可以看出:在無序充電情況下,充電負(fù)荷主要集中在電價高峰時段和平時段,充電費用較高;在有序充電情況下,將充電負(fù)荷有效轉(zhuǎn)移到電價低谷時段和光伏出力時段,充電費用較低。其中,用戶層有序充電和雙層多目標(biāo)有序充電效果較好,和光儲充一體化社區(qū)無序充電相比,充電均價分別降低了0.43元/kWh和0.4元/kWh。
3種有序充電策略均能取得不錯的效果,但用戶層有序充電容易使社區(qū)總負(fù)荷在電價低谷時段形成新的峰,不利于減少峰谷差。電網(wǎng)層有序充電僅考慮了配電網(wǎng)的穩(wěn)定性,忽略了用戶的用電成本需求,容易降低用戶的響應(yīng)積極性。而雙層多目標(biāo)有序充電在降低負(fù)荷峰谷差和減少用戶充電費用方面都能取得令人滿意的效果,該策略在降低社區(qū)負(fù)荷波動性、保障配電網(wǎng)安全運行的同時,提高了用戶的經(jīng)濟效益和響應(yīng)策略的積極性。
4解決方案
圖11平臺結(jié)構(gòu)圖
充電運營管理平臺是基于物聯(lián)網(wǎng)和大數(shù)據(jù)技術(shù)的充電設(shè)施管理系統(tǒng),可以實現(xiàn)對充電樁的監(jiān)控、調(diào)度和管理,提高充電樁的利用率和充電效率,提升用戶的充電體驗和服務(wù)質(zhì)量。用戶可以通過APP或小程序提前預(yù)約充電,避免在充電站排隊等待的情況,同時也能為充電站提供更準(zhǔn)確的充電需求數(shù)據(jù),方便后續(xù)的調(diào)度和管理。通過平臺可對充電樁的功率、電壓、電流等參數(shù)進行實時監(jiān)控,及時發(fā)現(xiàn)和處理充電樁故障和異常情況對充電樁的功率進行控制和管理,確保充電樁在合理的功率范圍內(nèi)充電,避免對電網(wǎng)造成過大的負(fù)荷。
5安科瑞充電樁云平臺具體的功能
平臺除了對充電樁的監(jiān)控外,還對充電站的光伏發(fā)電系統(tǒng)、儲能系統(tǒng)以及供電系統(tǒng)進行集中監(jiān)控和統(tǒng)一協(xié)調(diào)管理,提高充電站的運行可靠性,降低運營成本,平臺系統(tǒng)架構(gòu)如圖所示。
圖12充電樁運營管理平臺系統(tǒng)架構(gòu)
大屏顯示:展示充電站設(shè)備統(tǒng)計、使用率排行、運營統(tǒng)計圖表、節(jié)碳量統(tǒng)計等數(shù)據(jù)。
圖13大屏展示界面
站點監(jiān)控:顯示設(shè)備實時狀態(tài)、設(shè)備列表、設(shè)備日志、設(shè)備狀態(tài)統(tǒng)計等功能。
圖14站點監(jiān)控界面
設(shè)備監(jiān)控:顯示設(shè)備實時信息、配套設(shè)備狀態(tài)、設(shè)備實時曲線、關(guān)聯(lián)訂單信息、充電功率曲線等。
圖15設(shè)備監(jiān)控界面
運營趨勢統(tǒng)計:顯示運營信息查詢、站點對比曲線、日月年報表、站點對比列表等功能。
圖16運營趨勢界面
收益查詢:提供收益匯總、實際收益報表、收益變化曲線、支付方式占比等功能。
圖17收益查詢界面
故障分析:提供故障匯總、故障狀態(tài)餅圖、故障趨勢分析、故障類型餅圖等功能。
圖18故障分析界面
訂單記錄:提供實時/歷史訂單查詢、訂單終止、訂單詳情、訂單導(dǎo)出、運營商應(yīng)收信息、充電明細、交易流水查詢、充值余額明細等功能。
圖19訂單查詢界面
6產(chǎn)品選型
安科瑞為廣大用戶提供慢充和快充兩種充電方式,便攜式、壁掛式、落地式等多種類型的充電樁,包含智能7kw/21kw交流充電樁,30kw直流充電樁,60kw/80kw/120kw/180kw直流一體式充電樁來滿足新能源汽車行業(yè)快速、經(jīng)濟、智能運營管理的市場需求。實現(xiàn)對動力電池快速、高效、安全、合理的電量補給,同時為提高公共充電樁的效率和實用性,具有有智能監(jiān)測:充電樁智能控制器對充電樁具備測量、控制與保護的功能;智能計量:輸出配置智能電能表,進行充電計量,具備完善的通信功能;云平臺:具備連接云平臺的功能,可以實現(xiàn)實時監(jiān)控,財務(wù)報表分析等等;遠程升級:具備完善的通訊功能,可遠程對設(shè)備軟件進行升級;保護功能:具備防雷保護、過載保護、短路保護,漏電保護和接地保護等功能;適配車型:滿足國標(biāo)充電接口,適配所有符合國標(biāo)的電動汽車,適應(yīng)不同車型的不同功率。下面是具體產(chǎn)品的型號和技術(shù)參數(shù)。
類型 | 型號 | 圖片 | 功能 |
安科瑞充電樁收費運營云平臺 | AcrelCloud-9000 |
| 安科瑞響應(yīng)節(jié)能環(huán)保、綠色出行的號召,為廣大用戶提供慢充和快充兩種充電方式壁掛式、落地式等多種類型的充電樁,包含智能7kW交流充電樁,30kW壁掛式直流充電樁,智能60kW/120kW直流一體式充電樁等來滿足新能源汽車行業(yè)快速、經(jīng)濟、智能運營管理的市場需求,提供電動汽車充電軟件解決方案,可以隨時隨地享受便捷安全的充電服務(wù),微信掃一掃、微信公眾號、支付寶掃一掃、支付寶服務(wù)窗,充電方式多樣化,為車主用戶提供便捷、安全的充電服務(wù)。實現(xiàn)對動力電池快速、安全、合理的電量補給,能計時,計電度、計金額作為市民購電終端,同時為提高公共充電樁的效率和實用性。 |
互聯(lián)網(wǎng)版智能交流樁 | AEV-AC007D |
| 額定功率7kW,單相三線制,防護等級IP65,具備防雷 保護、過載保護、短路保護、漏電保護、智能監(jiān)測、智能計量、遠程升級,支持刷卡、掃碼、即插即用。 通訊方:4G/wifi/藍牙支持刷卡,掃碼、免費充電可選配顯示屏 |
互聯(lián)網(wǎng)版智能直流樁 | AEV-DC030D |
| 額定功率30kW,三相五線制,防護等級IP54,具備防雷保護、過載保護、短路保護、漏電保護、智能監(jiān)測、智能計量、恒流恒壓、電池保護、遠程升級,支持刷卡、掃碼、即插即用 通訊方式:4G/以太網(wǎng) |
互聯(lián)網(wǎng)版智能直流樁 | AEV-DC060S |
| 額定功率60kW,三相五線制,防護等級IP54,具備防雷保護、過載保護、短路保護、漏電保護、智能監(jiān)測、智能計量、恒流恒壓、電池保護、遠程升級,支持刷卡、掃碼、即插即用 通訊方式:4G/以太網(wǎng) 支持刷卡,掃碼、免費充電 |
互聯(lián)網(wǎng)版智能直流樁 | AEV-DC120S |
| 額定功率120kW,三相五線制,防護等級IP54,具備防雷保護、過載保護、短路保護、漏電保護、智能監(jiān)測、智能計量、恒流恒壓、電池保護、遠程升級,支持刷卡、掃碼、即插即用 通訊方式:4G/以太網(wǎng) 支持刷卡,掃碼、免費充電 |
智能邊緣計算網(wǎng)關(guān) | ANet-2E4SM |
| 4路RS485串口,光耦隔離,2路以太網(wǎng)接口,支持ModbusRtu、ModbusTCP、DL/T645-1997、DL/T645-2007、CJT188-2004、OPCUA、ModbusTCP(主、從)、104(主、從)、建筑能耗、SNMP、MQTT;(主模塊)輸入電源:DC12V~36V。支持4G擴展模塊,485擴展模塊。 |
擴展模塊ANet-485 | M485模塊:4路光耦隔離RS485 | ||
擴展模塊ANet-M4G | M4G模塊:支持4G全網(wǎng)通 | ||
導(dǎo)軌式單相電表 | ADL200 |
| 單相電參量U、I、P、Q、S、PF、F測量,輸入電流:10(80)A; 電能精度:1級 支持Modbus和645協(xié)議 證書:MID/CE認(rèn)證 |
導(dǎo)軌式電能計量表 | ADL400 |
| 三相電參量U、I、P、Q、S、PF、F測量,分相總有功電能,總正反向有功電能統(tǒng)計,總正反向無功電能統(tǒng)計;紅外通訊;電流規(guī)格:經(jīng)互感器接入3×1(6)A,直接接入3×10(80)A,有功電能精度0.5S級,無功電能精度2級 證書:MID/CE認(rèn)證 |
無線計量儀表 | ADW300 |
| 三相電參量U、I、P、Q、S、PF、F測量,有功電能計量(正、反向)、四象限無功電能、總諧波含量、分次諧波含量(2~31次);A、B、C、N四路測溫;1路剩余電流測量;支持RS485/LoRa/2G/4G/NB;LCD顯示;有功電能精度:0.5S級(改造項目) 證書:CPA/CE認(rèn)證 |
導(dǎo)軌式直流電表 | DJSF1352-RN |
| 直流電壓、電流、功率測量,正反向電能計量,復(fù)費率電能統(tǒng)計,SOE事件記錄:8位LCD顯示:紅外通訊:電壓輸入*大1000V,電流外接分流器接入(75mV)或霍爾元件接入(0-5V);電能精度1級,1路485通訊,1路直流電能計量AC/DC85-265V供電 證書:MID/CE認(rèn)證 |
面板直流電表 | PZ72L-DE |
| 直流電壓、電流、功率測量,正反向電能計量:紅外通訊:電壓輸入*大1000V,電流外接分流器接入·(75mV)或霍爾元件接入(0-20mA0-5V);電能精度1級 證書:CE認(rèn)證 |
電氣防火限流式保護器 | ASCP200-63D |
| 導(dǎo)軌式安裝,可實現(xiàn)短路限流滅弧保護、過載限流保護、內(nèi)部超溫限流保護、過欠壓保護、漏電監(jiān)測、線纜溫度監(jiān)測等功能;1路RS485通訊,1路NB或4G無線通訊(選配);額定電流為0~63A,額定電流菜單可設(shè)。 |
開口式電流互感器 | AKH-0.66/K |
| AKH-0.66K系列開口式電流互感器安裝方便,無須拆一次母線,亦可帶電操作,不影響客戶正常用電,可與繼電器保護、測量以及計量裝置配套使用。 |
霍爾傳感器 | AHKC |
| 霍爾電流傳感器主要適用于交流、直流、脈沖等復(fù)雜信號的隔離轉(zhuǎn)換,通過霍爾效應(yīng)原理使變換后的信號能夠直接被AD、DSP、PLC、二次儀表等各種采集裝置直接采集和接受,響應(yīng)時間快,電流測量范圍寬精度高,過載能力強,線性好,抗干擾能力強。 |
智能剩余電流繼電器 | ASJ |
| 該系列繼電器可與低壓斷路器或低壓接觸器等組成組合式的剩余電流動作保護器,主要適用于交流50Hz,額定電壓為400V及以下的TT或TN系統(tǒng)配電線路,防止接地故障電流引起的設(shè)備和電氣火災(zāi)事故,也可用于對人身觸電危險提供間接接觸保護。 |
絕緣監(jiān)測儀 | AIM-D100-ES |
| AIM-D100-ES系列直流絕緣監(jiān)測儀可以應(yīng)用在15~1500V的直流系統(tǒng)中,用于在線監(jiān)測直流不接地系統(tǒng)正負(fù)極對地絕緣電阻,當(dāng)絕緣電阻低于設(shè)定值時,發(fā)出預(yù)警或報警信號。 |
絕緣監(jiān)測儀 | AIM-D100-T |
| AIM-D100-T系列直流絕緣監(jiān)測儀可以應(yīng)用在10~1000V的直流系統(tǒng)中,用于在線監(jiān)測直流不接地系統(tǒng)正負(fù)極對地絕緣電阻,當(dāng)絕緣電阻低于設(shè)定值時,發(fā)出預(yù)警或報警信號。 |
7現(xiàn)場圖片
8結(jié)論
光儲充一體化社區(qū)雖然可以提高光伏的就地消納,降低社區(qū)負(fù)荷峰值,但仍存在社區(qū)負(fù)荷的越限問題。對此提出了基于鼠群優(yōu)化算法的雙層多目標(biāo)有序充電策略,該策略滿足了電網(wǎng)層和用戶層的雙方利益,不僅可以減少社區(qū)負(fù)荷峰谷差,還能降低用戶充電費用。同時基于云邊協(xié)同的調(diào)度架構(gòu)充分利用云端側(cè)和邊緣側(cè)的計算資源,可以應(yīng)對電動汽車大規(guī)模接入的情況。根據(jù)算例分析,該策略取得的綜合效果明顯優(yōu)于無序充電和單層有序充電策略,起到了削峰填谷、節(jié)約用戶充電費用的作用,保障了電網(wǎng)的安全、穩(wěn)定運行。
本文未考慮到不同電動汽車型號、電池類型等因素,此外僅考慮社區(qū)有序充電場景,后續(xù)將展開進一步研究,使該策略更具實用性和擴展性。
參考文獻
[1]康童,朱吉然,馮楚瑞,范敏,任磊,唐海國.面向光儲充一體化社區(qū)的有序充電策略研究
[2]張延宇,饒新朋,周書奎,等.基于深度強化學(xué)習(xí)的電動汽車充電調(diào)度算法研究進展[J].電力系統(tǒng)保護與控制,2022,50(16):179-187.
[3]李景麗,時永凱,張琳娟,等.考慮電動汽車有序充電的光儲充電站儲能容量優(yōu)化策略[J].電力系統(tǒng)保護與控制,2021,49(7):94-102.
[4]鄧慧瓊,張曉飛,曾凡淦,等.動態(tài)分時電價機制下的電動汽車充放電調(diào)度策略研究[J].智慧電力,2023,51(3):59-66,78.
[5]安科瑞企業(yè)微電網(wǎng)設(shè)計與應(yīng)用手冊2022.5版.